Отопительный модуль

Тепловой баланс строения

Выбор типа отопительного прибора обычно начинается с оценки необходимой мощности теплового источника. Такая оценка, как правило, производится в быту крайне ориентировочно, интуитивно (то есть на основе личного опыта или «мнения соседа»), на уровне житейских понятий «хватит», «достаточно», «маловато». Действительно, редко кто рассчитывает в деталях теплопотери будущей дачной постройки и теплоотдачу задумываемой печи. Только сауны заводского изготовления порой имеют хоть какие-нибудь паспортные характеристики, да и то с учётом многочисленных поправок с погрешностью порой в два-три раза. Чаще всего обеспеченные дачники принимают решение «с запасом», чтобы потом «не жалеть», то есть устанавливают печь наиболее крупного размера, которая бы «влезла и не очень мешала».

Тепловая инерция строения

В предыдущем разделе мы оценили основные теплопотери при уже протопленной бане. Но ведь затапливают баню в холодном состоянии, и чтобы её нагреть, необходимы теплозатраты, которые также обеспечиваются отопительным прибором (печью). Учитывая теплоёмкости различных материалов, оценим, сколько надо тепла, чтобы прогреть 30 м² стен с условными уровнями теплозащиты А и В. Для удобства оценок теплозатраты представлены в единицах кВт•час. Если мощность теплового источника составляет, например, 1 кВт (уровень обычного бытового электрообогревателя), то «коробка» рассматриваемого размера, обитая изнутри утеплителем 40 мм и вагонкой 10 мм, нагреется за 10 часов. Во-первых, бросается в глаза весьма неожиданный результат: чем теплее здание из кирпича (или бруса), тем больше тепла требуется на его протопку. Действительно, чем толще стены, тем они более тёплые (в смысле малости кондуктивных потерь за счёт теплопроводности), но в то же время они более массивные и потому требуют больше тепла на первичный прогрев.

Особенности ввода тепла в баню

Ранее мы молчаливо предполагали, что вводимое в баню тепло тут же потребляется всей баней целиком, и вследствие этого все элементы бани нагреваются равномерно. Но ведь ясно, что ведро с водой закипит на плите через один час, а ведро с водой на полу (или даже на банном полке у потолка) не закипит никогда. То есть одни элементы бани прогреваются быстро и, может быть, чрезмерно, а другие — крайне недостаточно. Картину распределения тепла в бане определяет в первую очередь сама система отопления. Напомним, что системы отопления в самом общем случае состоят из следующих конструктивных элементов: — теплового источника (теплонагревателя, печи, котла и т. п.); — теплопроводов, перемещающих тепло, в том числе с помощью теплоносителей (дымовых газов, воздуха, воды, лучистого тепла и т. п.) от теплового источника к отопительным приборам; — отопительных приборов (теплообменников), передающих тепло в помещение (в воздух, в стены, в воду и т. п.).

Аккумуляция тепла в бане

Принцип аккумуляции тепла является определяющим для правильного понимания конструкций и древних бань, и ультрасовременных. Напомним, что тёплые (то есть с малыми тепловыми потерями в разогретом состоянии) бани могут энергетически мыслиться в следующих противоположных по теплоёмкости предельных вариантах. Во-первых, это особо высокотеплоёмкие бани (с высокотеплоёмкими стенами и печами), например, так называемые белые бревенчатые (рубленые) бани с цельнокирпичной печью. В таких банях либо вынужденно используют пар для эпизодического или периодического вывода тепла из массива печи (из каменки) для подогрева помещения, либо очень долго топят печь (днями и неделями), а потому используют (поддерживают при высокой температуре) постоянно. К этому классу относятся усадебные бани, термы, хаммамы, городские непрерывно работающие коммунальные бани. Характерной чертой всех этих бань является долгое остывание, в частности, устойчивость температурного (именно температурного, но не влажностного) режима при залповых проветриваниях.

Каменки

Работать с горячей водой в древности не умели. Поэтому традиционными теплоаккумулирующими устройствами древнейших бань являлись всевозможные каменки — кучи (насыпи, засыпки, навалы, обваловки) камней: крупных окатаных валунов, окатаных среднего размера булыжников, крупных ломаных глыб, более мелких кусков, в том числе натурального гравия и искусственно долблёного щебня, вплоть до крошки и песка. В популярной литературе обычно различают каменки закрытые (располагаемые внутри печи) и открытые (располагаемые вне печи). Понятие закрытых каменок относится преимущественно к цельнокирпичным печам и означает, что камни расположены в атмосфере дымовых газов печи (в топке, в дымовой трубе или её расширении) так, чтобы пламя и дымовые газы нагревали слой камней. Такие каменки могут быть использованы лишь после протопки печи и поэтому называются иногда в банном деле более научно — каменками периодического (эпизодического) действия. Понятие открытых каменок относится к печам более современным, имеющими металлические теплопередающие поверхности — жаровые плиты или разного рода контейнеры для нагрева камней.

Древесина как топливо

Дрова всё ещё остаются основным видом топлива для дачных бань, а в любительских банях являются непременным элементом антуража. Дрова достаточно экологичны: в отличие от каменного угля и нефти древесина при сжигании не образует сернистых соединений, но по сравнению с газом, дрова дают много дымовых выбросов, особенно при растопке. Требования к качеству дров для отопления стандартизованы по ГОСТ 3243-88. Однако для бань требования более жёсткие. По крайней мере, в чёрных банях выбор дров всегда имел определяющее значение. Дрова должны были быть малосмолистыми — из древесины лиственных пород — ольхи, берёзы, осины, дуба, липы (чтобы поменьше дымили), тщательно высушенными (чтобы не дымили, не давали больших языков пламени и оставляли большое количество углей), достаточно крупными (чтобы равномерно прогревали, оставляли большое количество углей), и во всяком случае не хворост (сушёные ветки), не дровяные отходы по ГОСТ 23827-79 и не тонкомер (горбыль) ГОСТ 18288-87. Лучше всего подходит для чёрных бань предварительно заготовленный крупнокусковой древесный уголь (или породы древесины для пиролиза и углежжения по ГОСТ 24260-80). 

Структура древесины

Древесина представляет собой очень неоднородное по своему составу и пространственной структуре образование. Располагаясь между корой и сердцевиной, древесина прирастает, утолщая ствол, из так называемого камбия — особой образовательной ткани, очень тонкой, не видимой глазом, располагаемой между древесиной и лубом (корой). В камбии путём деления клеток рождаются новые живые, сильно удлинённые вдоль ствола, клетки (прозенхимные, то есть волокноподобные) длиной в среднем 3,5 мм и толщиной 0,05 мм у сосны и длиной 1,2 мм и толщиной 0,02 мм у берёзы. Эти клетки содержат (как и все клетки растений) внутри себя жидкую цитоплазму с ядрами, вакуолями, митохондриями, хлоропластами и т. д. 

Физико-химические свойства древесины

Элементный химический состав абсолютно сухой древесины всех пород практически одинаков: углерод 49-50%, кислород 42-44%, водород 6-7%, азот 0,1-0,7%, неорганическая часть 0,1-2% (зола, состоящая из окислов калия, кальция, натрия, магния, кремния и т. п.). В абсолютно сухой древесине содержится 39-58% целлюлозы, 17-34% лигнина, 15-38% гемицеллюлозы и до нескольких процентов восков, смол, таннинов, жиров, эфирных масел. Плотность древесного вещества (материала абсолютно сухих клеточных стенок) не зависит от породы и равна 1530 кг/м³. В то же время плотность абсолютно сухой древесины из-за наличия внутриклеточных пустот колеблется для разных пород в широких пределах от 100 кг/м³ (бальса) до 1300 кг/м³ (гваякум). Теплота сгорания абсолютно сухой древесины всех пород одинакова и составляет 4500 ккал/кг = 18800 кДж/кг = 5,2 кВт•час/кг. Это значение соответствует присутствию воды в продуктах сгорания в виде водяных паров. Именно это значение используется во всех энергетических расчётах печей, поскольку водяные пары в топливнике и дымоходах никогда не конденсируются. Если же водяные пары в дымовых газах всё же сконденсировать, то теплота сгорания повысится до 4700-4900 ккал/кг, то есть на 4-8%. Этот процесс реализуется в ультрасовременных, так называемых «конденсирующих» теплогенераторах (см. далее рис. 102в), полностью охлаждающих дымовые газы с конденсацией водяных паров и полезно использующих дополнительно снимаемое тепло. Тяга теплогенератора при этом уже не может создаваться дымовой трубой и обеспечивается электрическим вытяжным вентилятором. Коэффициент полезного действия конденсирующих теплогенераторов может достигать 106-108% (считая за 100% идеальный теплогенератор без конденсации пара и без охлаждения дымовых газов).

Пиролиз древесины

Воспламенение и горение древесины есть следствие её нагрева до высоких температур в воздухе. В холодном состоянии древесина воздухом не окисляется. При нагреве древесина термически разрушается с образованием легкогорючих веществ, которые могут воспламеняться и поддерживать дальнейшее горение древесины. Поэтому для правильного понимания процессов горения необходимо знать как термически разрушается древесина. Первичное термическое разрушение древесины происходит внутри полена, а значит без доступа воздуха (ввиду слабой газопроницаемости древесины). Термическое разрушение древесины в инертной среде (без доступа кислорода воздуха или иных окислителей) называется термической деструкцией, термическим разложением или пиролизом. В дальнейшем мы будем для краткости пользоваться термином «пиролиз», хотя сразу оговоримся, что «pyr» по-гречески означает огонь, и поэтому точнее было бы понимать под термином «пиролиз» разрушение в огне (то есть при горении в кислороде), а не разрушение в инертном газе. Так, например, в лесоведении «пирологией» называют науку о лесных пожарах и и вызываемых ими изменениях в лесу.

Пламенное горение горючих газов

Образующиеся при пиролизе древесины угли и горючие газы сгорают на воздухе по-разному, причём и горючие газы сгорают по-разному в зависимости от того, смешаны ли они с воздухом предварительно в горючую смесь (гомогенные пламена) или не смешаны или частично смешаны (гетерогенные диффузные пламена). Метан через жиклёр 1 подаётся в модельную горелку 2, где струйно смешивается с подсасываемым через отверстия 3 «первичным» воздухом, а затем сгорает во «вторичном» воздухе над горелкой в виде известного голубого прозрачного пламени 4 (рис. 93). Процесс горения является самоподдерживающимся процессом: в зону пламени 4 поступает метан изнутри, а кислород воздуха снаружи. Метан в смеси с подмешанным воздухом сначала прогревается за счёт теплопроводности от фронта горения, затем начинает термически разлагаться (как при пиролизе). Образующиеся активные радикалы при наличии кислорода тотчас вступают в первичные реакции окисления (с выделением тепла СН₄+О₂→CH₂+H₂+O₂→CO*+ H₂O +H₂ и т. д.), а затем всё это догорает во внешнем («вторичном») воздухе 10.

Воспламенение и горение дров

Для простейшего качественного анализа возьмём деревянную дощечку и положим её плашмя на тлеющие угли очага. Ясно, что доска должна нагреваться снизу, а значит и дрова в кострах и в печах вспыхивают и горят снизу. Поминутно перевёртывая дощечку для осмотра нагревающейся стороной вверх, можно заметить, что сначала обугливаются и начинают тлеть заусеницы (ворсинки) на поверхности доски 3. Поэтому для облегчения загорания дров, перед растопкой на поленьях иногда делают топором крупные насечки (заусенцы, заструги). И наоборот, для предотвращения преждевременного воспламенения, доски обжигают паяльной лампой (газовой горелкой, факелом, лучиной) для удаления ворсистости поверхности древесины, например, на потолке курной бани.

Дровяные печи

Понятие «печи» в современном русском языке стало не вполне определённым (так же как и понятие «бани»). Так, в древности под печью понимали (в отличие от костра) не просто огонь, а то тепло, которое сохранялось в камне (кирпичах, глине) после прогорания огня. Русская печь грела и пекла не во время горения огня, а после. Печёная еда — это не жаренная на огне или углях и не варёная в кастрюле на кухонной плите, а приготовленная при помощи лучистого тепла от раскалённого свода печи. Фактически можно сказать, что и в чёрной бане люди «пекутся» на «вольном жаре» от раскалённых валунов, стен и потолков.

Устройства для сжигания дров

Простейшим обогревающим устройством является костёр, представляющий собой совокупность двух или более поленьев, греющих друг друга. Костёр является величайшим изобретением человечества. Чёрные (курные) бани — это фактически сочетание костра и воды. Пустоты между поленьями костра практически представляют собой множество микротопок с горящими деревянными «стенками». Скорость горения «стенок» может целенаправленно изменяться подбором размера и порядком укладки поленьев, их шуровкой, увлажнением, продувкой воздуха и т. п. В этом отличие костров от лесных и бытовых пожаров, которые «управляемы» весьма условно (в части тушения). Но, конечно, теория локальных костров лежит в основе теории распространяющихся пожаров. Первичными отличиями костра от полена являются: во-первых, возможность подогрева поленьев (для сушки, воспламенения и горения) другими уже горящими поленьями и во-вторых, возможно затруднённый доступ кислорода к месту горения. Если воздух подавать во все промежутки между поленьями в достаточном количестве, то пламя костра низкое (сосредоточено в закладке дров). Но если воздуха в закладке дров не хватает, то летучие продукты пиролиза вырываются из межполенных промежутков и догорают над костром в виде «столба огня».

Особенности сжигания дров в печи

Теория топочных процессов включает вопросы газодинамики струй и течений, кинетики химических реакций горения, теплообмена с поверхностями топки и каналов (Г.Ф. Кнорре, Топочные процессы, М.; Л.: Госэнергоиздат, 1959 г.; М.А. Глинков, Основы общей теории печей, М.: Металлургиздат, 1962 г.). Многочисленность факторов делает оптимизацию топок весьма сложной задачей даже для специалистов. Настоящая книга не ставит задач по анализу и систематизации тех миллиардов различных конкретных конструкций печных устройств, которые были разработаны человечеством в ходе эволюции, тем более, что толковому печнику психологически и технически проще придумать сотню новых конструкций, чем довести одну единственную (А.И. Рязанкин, Секреты печного мастерства, М.: Народное творчество , 2004 г.). Мы остановимся только на одном, но самом главном, с нашей точки зрения, моменте: взаимосвязи процесса горения каждого индивидуального полена с процессами работы всей печи в целом.

Механизмы теплосъёма в печах

Тепло, выделившееся в результате химической реакции горения дров, разделяется в печи на две части: на «полезное» тепло, идущее на нагрев помещения (стен, потолка, пола, воздуха, людей, самой печи и т. п.), и на тепло, безвозвратно и «бесполезно» выброшенное из дымовой трубы в атмосферу. Слово «бесполезно» поставлено в кавычки из-за того, что наряду с действительной невозможностью использования тепла дыма, выброшенного в атмосферу, для нагрева помещения, тем не менее, тепло дыма было полезно и необходимо, поскольку именно это тепло создавало тягу в трубе для подачи воздуха в печь. Бывает так, что «тепловая» цена за тягу оказывается несуразно высокой, и дачник пытается снизить эту цену. При этом у дачника фактически только два пути: снижать температуру выбрасываемых дымовых газов или снижать массовый расход дымовых газов (при одной и той же скорости горения дров). Исторически на этапе перехода от открытых очагов через камины к печам снижался массовый расход дымовых газов (или, что одно и то же, расход подаваемого воздуха). На этапе перехода к многооборотным печам снижалась температура выбрасываемых дымовых газов. Сейчас, на этапе перехода к герметичным металлическим печам, стремятся ещё больше снизить массовый расход дымовых газов.

Страницы