Монтаж эффективных утеплителей и пароизолирующих плёнок

Пытаясь во что бы то ни стало пароизолировать стены бань, дачники в то же время стараются упрятать пароизоляцию вглубь стен так, чтобы сверху оказался декоративный материал, например, «дышащая и экологически чистая» евровагонка или ещё лучше, доски из осины, липы, а то и из заморской древесины абаши. При этом порой бывает трудно с определённостью сказать, является ли внутренняя обшивка только декоративной или одновременно является и утеплителем. Воздушные промежутки между утеплителем и декоративной обшивкой также являются то утеплителями (то есть, в которых воздух не движется), то высушивающими, но захолаживающими продухами (то есть, в которых воздух движется). В каждом случае необходимы оценки месторасположения точки росы в многослойной стене.

Численный анализ возможности конденсации в многослойной стене
Рис. 29. Численный анализ возможности конденсации в многослойной стене: 1 — несущая бетонная стена, 2 — брусок деревянный, 3 — деревянная обшивка, 4 и 5 — строительный картон (модельный случай), 5 — необходимое месторасположение пароизоляции. Сверху — расчёт для бетонной стены без деревянной обшивки. Внизу — расчёт для бетонной стены с деревянной обшивкой. Обозначения те же, что и на рисунке 23.

Одно из наиболее частых решений, используемых, например, и при монтаже бань в цоколях и подвалах коттеджей, представлено на рисунке 29. К несущей бетонной (кирпичной) стене 1, например, толщиной 10 см прикреплены бруски 2 толщиной 5 см, а к брускам прибита деревянная обшивка 3 (сплошная без щелей) толщиной 2,5 см (один дюйм). Зазор, образованный бруском, заполнен неподвижным воздухом и может быть ветрозащищён с обеих сторон строительным картоном 4 и 5 толщиной 1 мм. Картон введён чисто модельно для оценки влияния ветрозащитных мембран. Паропроницаемый картон имеет весьма низкую паропроницаемость (на уровне древесины и кирпича), но ввиду малой толщины практически не оказывает влияния (как показывает расчёт) на распределения температуры и абсолютной влажности воздуха в стене (перепад температуры на картоне менее 0,3 °С). Зазор может быть заполнен минеральной ватой без изменения результатов расчёта.

Численный анализ показывает, прежде всего, что бетонная стена практически не выполняет теплоизолирующих функций, так что обивка стен деревом безусловно оправдана (рис 29). Так, чтобы поддерживать внутреннюю поверхность бетонной стены при 80°С требуется фантастическая величина нагрева 1,74 кВт/м², в то время как деревянная поверхность обивки банной стены нагревается до 80 °С уже при тепловом потоке в 40 раз меньшем — 44 Вт/м². Вместе с тем, бетон внутри обитой стены продолжает играть роль основного пароизолятора. При абсолютной влажности воздуха в помещении d0=0,05 кг/м³ (при относительной влажности ϕ=17%) стена с обшивкой, нагретой до 80°С, пропускает через себя пары воды весьма ограниченно — порядка 1,9 г/м² час. Вначале высокая влажность воздуха dдиф стремится сформироваться в зазоре вплоть до бетонной поверхности как паробарьера. При этом конденсация паров начинается в точке росы, отмеченной чёрной каплей (расположенной где-то посредине зазора). Затем из-за конденсации абсолютная влажность в зазоре резко снижается до (dдиф* так, что конденсация стабилизируется в точке, обозначенной стрелкой, расположенной на внутренней стороне бетона (на внешней стороне зазора, выполняющего роль утеплителя). При этом скорость диффузии пара в стену резко увеличивается до 16 г/м² час (в 8 раз) так, словно бы деревянная обивка срывается и оголяет холодную поверхность бетона, интенсивно конденсирующую водяные пары в виде росы. Конечно, два слоя картона и деревянная обшивка (сплошная без щелей) без сомнения являются паробарьером, и поток пара в стену 16 г/м² час не столь уж велик по сравнению с тем, который мог бы быть в отсутствии деревянной обшивки. Действительно, конденсация потока пара 16 г/м² час приводит к выделению тепла конденсации на поверхности бетона всего лишь на уровне 10 Вт/м², что меньше, чем поток кондуктивного («сухого») тепла 44 Вт/м². А реальные тепловые нагрузки за счёт конденсации пара на теплонезащищённые бетонные (каменистые) поверхности в городских банях при поддачах острого пара из магистрали могут достигать десятков кВт/м² и резко повышать температуру бетона.

Всё это означает, что воздушный зазор под деревянной обшивкой (может быть, заполненный паропроницаемым утеплителем типа минваты) необходимо пароизолировать, монтируя вместо картона 5 пароизолирующую мембрану 5 (алюминиевую фольгу, армированную полиэтиленовую плёнку и т. п.). При этом возникает вопрос, часто обсуждаемый в профессиональной среде: можно ли деревянную обшивку примыкать непосредственно к этой пароизолирующей мембране?

Прежде всего отметим, что любая паропроницаемая ( в том числе деревянная) обшивка при наличии под ней мощной теплоизоляции и пароизоляции становится чисто декоративной. Ни температура, ни абсолютная влажность воздуха в пределах деревянной обшивки и воздушного зазора от древесины 3 до пароизолирующей мембраны 5 заметно не изменяются. А это значит, что в постоянно отапливаемых помещениях с хорошей теплоизоляцией стен величина зазора между древесиной 3 и пароизоляцией 5 абсолютно не критична и никак не нормируется. В периодически же протапливаемых банях, в местах, где возможно случайное проникновение за обшивку компактной воды (которой моются) или выделение небольшого количества росы, щели в деревянной обшивке и зазоры между обшивкой 3 и пароизоляцией 5 желательны, чтобы вода под обшивкой могла быстро и беспрепятственно испаряться и удаляться. Однако для экстремальных паровых режимов зазоры не допустимы, поскольку вся роса должна впитываться в древесину (чтоб затем, испаряясь, поддерживать «пар» в парной). Зазоры же с отражательной теплоизоляцией герметизируют обязательно.

В случае же недостаточной теплоизоляции (при малости зазора между 4 и 5) холодная пароизолирующая мембрана хоть и не пропустит влагу, но станет конденсатором влаги. Мы уже отмечали, что паропроницаемая обивка бетона (материала с низкой паропроницаемостью) деревянными досками со стороны помещения неминуемо приведёт к конденсации влаги на поверхности бетона и увлажнению тыльной стороны древесины, и дополнительная пароизоляция между бетоном и древесиной только поможет этому. Поэтому пароизоляцию придётся перенести на лицевую поверхность древесины с тем, чтобы ни вода, ни пары воды вообще не могли бы попасть на древесину. Если же пароизолирующую мембрану всё же оставить в глубине стены, то её температуру необходимо обеспечить на уровне выше точки росы, то есть в банях выше, по крайней мере, 40°С. Это означает, что теплоизолирующий зазор между поверхностями 4 и 5 (или 1 и 5) никогда не следует уменьшать, даже в угоду большей величине и лучшей вентилируемости зазора между пароизоляцией 5 и деревянной обшивкой 3. Во всяком случае, как следует из рисунка 29, толщина утеплителя (воздушного зазора) между бетоном 1 и пароизоляцией 5 должна быть не менее, чем в 4-5 раз больше, чем ширина зазора между пароизоляцией 5 и деревянной обшивкой 3. Ну и конечно же, уровень нагрева стены со стороны бани должен быть достаточным, чтобы обеспечить требуемую минимально допустимую температуру пароизолирующей мембраны 40°С.

Учитывая, что небрежно уложенная (со сквозными разрывами и с неуплотненными стыками листов) пароизоляция порой бывает опасней для бани, чем полное отсутствие таковой, простейший монтаж обшивки бетонной (каменной, кирпичной) стены осуществляют в следующем порядке. Сначала на бетонной стене закрепляют на анкерах деревянные бруски (лучше на подкладках из рубероида) или профильные п-образные металлические или пластмассовые планки (вертикальные, а лучше горизонтальные) с промежутками точно в размер плит утеплителя (рис. 30а). После укладки плиты утеплителя с тщательным заполнением зазоров между плитой утеплителя и брусками (кусками мягкой минваты от матов) на бруски навешивают на кнопках (или приклеивают на липкой ленте) листы (рулоны) пароизоляционной плёнки так, чтобы листы перенахлёстывались с последующим уплотнением стыков листов деревянными планками, прибиваемыми (а лучше привинчиваемыми) к деревянным брускам. По деревянным планкам может быть уложен второй слой пароизоляции (при сомнениях в надёжности и качественности основного парозащитного слоя). Деревянная обшивка (вагонка) прикрепляется к брускам через планки тонкими оцинкованными гвоздями.

Примеры монтажа многослойных стен
Рис. 30. Примеры монтажа многослойных стен: Слева — наружная сторона стены, справа — внутренняя сторона стены, направленная в помещение. Перечисления слоев слева направо: а — грунт, вентилируемая гидроизоляция типа «фундалин», вентилируемый зазор (продух), кирпичная (бетонная) стена подвала, прокладки рубероида, деревянные бруски с заложенным между ними враспор утеплителем (плитой из пенопласта или минваты), листовая (рулонная) г) д) е) пароизоляция, деревянные планки для уплотнения нахлёстов пароизоляции, деревянная обшивка; б — тонкий 8-12 мм паропроницаемый штукатурный слой, жёсткая плита из минваты, прижатая металлической сеткой, стальные оцинкованные кронштейны (стержни, шпильки, крепежные элементы) для фиксации утеплителя, кирпичная (бетонная) несущая стена; в — защитнодекоративный экран (металлический, пластиковый, стеклянный, асбоцементный), вентилируемый зазор, металлическая удерживающая сетка, кронштейны металлические (для крепления экрана, сетки и утеплителя), жёсткая плита из минваты, кирпичная (бетонная) несущая стена; г — грунт, теплогидроизоляция (экструзионный пенополистирол), кирпичная (бетонная) стена подвала или цоколя, металлические короба (кронштейны, швеллеры или профили по рис. 31 и 32) для формирования вентилируемого зазора, асбоцементная плита, деревянные бруски с заложенным между ними утеплителем, пароизоляционная плёнка, деревянная обшивка; д — кирпичная облицовка, вентилируемый зазор, бревенчатая (брусовая) стена, выравнивающие деревянные бруски с утеплителем (или без утеплителя) между ними, пароизолирующая плёнка, деревянная обшивка; е — внешняя деревянная обшивка, ветроизоляция, каркас из деревянных брусков (брусьев) с заложенным утеплителем, пароизоляция, внутренняя деревянная обшивка.

Современный крепёж лучше вести не гвоздями, а саморезами с предварительным высверливанием направляющих отверстий для предотвращения раскалывания несущих брусков и планок. В особенной степени это относится к стяжному крепежу большой длины (более 50 мм), при этом дачника не должны смущать размеры самореза (длины более 100 мм). К сухой бетонной (кирпичной) стене бруски крепятся длинными винтами с увеличивающимся диаметром резьбы (шурупами), в том числе и с шестигранной головкой под ключ, вворачиваемыми враспор в туговбитую надёжно просмолённую деревянную бобышку. Во влажных же стенах цоколей и подвалов предпочтительно использовать полиэтиленовые или металлические (резаные вдоль) закладные бобышки в комбинации с расширяющимися винтами (анкеры) или специальные саморезы по бетону с головкой под шестигранную отвёртку, вворачиваемые непосредственно в отверстие в стене, предварительно просверленное обычным сверлом.

Все скрытые крепёжные работы в банях необходимо проводить с особой тщательностью, поскольку любые расколы древесины, выпадения крепёжных элементов, деформации внутри стены могут привести к неоправданным нарушениям сплошности пароизоляции и теплоизоляции, которые невозможно не только отремонтировать, но и даже обнаружить визуально из-за наличия обшивки. Наиболее сложно добиться надёжной сплошности в системе теплоизоляции, тем более, что она может повреждаться грызунами (мышами, крысами), которые вопреки уверениям продавцов, часто поселяются и в минвате, и в пенополистироле. Особенно трудно крепить минвату, имеющую, как правило, очень низкую механическую жёсткость и упругость. В последние десятилетия строительная индустрия сильно продвинулась в области крепления минеральных ват на наружных стенах городских многоэтажных домов в целях утепления фасадов. Минеральная вата ввиду своей негорючести значительно более привлекательна для капитального строительства, чем пенополистирол, который и легко плавится, и горит, вследствие чего требует на стенах технически сложновыполнимых противопожарных рассечек. Особенно интересна базальтовая (каменная) вата ввиду своей высокой теплостойкости и устойчивости к пожарам. Поэтому в промышленности было затрачено немало усилий по разработке многослойных жёстких плит из минваты, которые можно было бы и приклеивать к фасаду и даже оштукатуривать снаружи. Такие жёсткие плиты для фасадных работ обычно имеют повышенную плотность, обработаны водоотталкивающими составами, пропитаны синтетическими смолами для жёсткости, покрыты слоями щелочестойкого стеклохолста, стеклосетки или жёсткого нетканного материала (из плотной минваты типа войлока повышенной плотности). Несмотря на улучшенные характеристики плиты могут надёжно приклеиваться к фасаду лишь при его строгой вертикальности (при отклонениях от вертикали не более 10-15 мм) и надёжно держать штукатурку не толще 10-15 мм (при сроке эксплуатации до 15-30 лет). Поэтому в российских условиях, когда неровность стен многоэтажных домов может достигать 70 мм и более, применяют подвеску плит минваты методом накалывания на многочисленные горизонтальные кронштейны (в количествах, определенных изготовителем плит), закреплённые на поверхности стены вертикально её поверхности (параллельно горизонту). На тех же кронштейнах (анкерах, шпильках) крепится удерживающая армирующая, ограждающая металлическая сетка и держится штукатурный слой, толщина которого в этом случае может достигать 25-30 мм (см. рис. 30 б). Конструкций различного рода кронштейнов разработано много, в том числе и гибких (подвижных или шарнирных), способных прижимать плиту утеплителя к защищаемой стене под действием силы тяжести штукатурного слоя. Иногда между утеплителем и штукатуркой предусматривают каналы-продухи, соединяющиеся в местах вентиляционных отверстий на фасаде (площадью не менее 75 см2 на 20 м2 площади стены по СП 23-101-2000). Относительно целесообразности вентиляции штукатурного слоя через специальные продухи у специалистов нет единого мнения (точно так же, как у строителей бань относительно необходимости вентилируемого зазора между вагонкой и пароизоляцией). Одни считают, что вентилируемые продухи выключают из системы теплозащиты здания внешний слой штукатурки, способствуют намоканию внутренних слоев теплоизоляции при выпадении росы из вентиляционного воздуха при его повышенной влажности. Другие же, наоборот, считают, что вентилируемые каналы способствуют быстрому высыханию стен и утеплителя, улучшают воздухообмен в стене и т. п.

Конечно же, если штукатурка и утеплитель имеют высокую паропроницаемость (а именно такие особые штукатурные составы и разрабатываются для утепления фасадов), то и вентиляция фасада не требуется. Но если фасад декорируется паронепроницаемыми материалами (стеклом, пластиком, гофрированным металлом и т. п.), то вентиляционные системы, выводящие влагу из утеплителя (а фактически из стены), абсолютно необходимы (см. рис. 30 в). Для этого разработаны специальные крепёжные элементы (кронштейны, анкеры, шпильки), удерживающие одновременно и утеплитель, и удерживающую (ограждающую) сетку, и внешнюю декоративно-защитную облицовку (ветродождезащитную). Подобный опыт утепления наружных стен зданий может быть использован с известными оговорками и при утеплении внутренних стен каменных зданий при монтаже встроенных бань. Так, в технологии встроенных саун, примыкающих к стенам, финнами применяются системы кронштейнов, заканчивающихся шпильками с резьбой (Мб, М8 или М10). Плиты минваты нанизываются на эти кронштейны, после чего накладывается пластиковая или металлическая сетка (штукатурная, в том числе и сварная), прижимающаяся шайбами большого диаметра и притягивающаяся гайками по резьбе на шпильках или кронштейнах (рис. 31). На этих же кронштейнах может быть повешена облицовка в виде щитов из вагонки, опирающихся на пол. Такая конструкция позволяет избавиться от деревянных брусков и изготовить единый слой утеплителя (но, к сожалению, со сквозными «мостиками» усиленной теплопередачи по металлическим кронштейнам).

 Вариант крепления жёсткой плиты минеральной ваты к стене на кронштейнах
Рис. 31. Вариант крепления жёсткой плиты минеральной ваты к стене на кронштейнах. 1 — стена несущая, 2— пластины, 3 — приваренные кронштейны с резьбой (например, М8), 4 — гвозди (шурупы), 5 — плита минваты, 6 — места нанизывания (раздвигаемые шилом, отверткой), 7 — прижимная шайба (или сетка), 8 — гайка.
Форма стоечных профилей ПС и направляющих профилей ПН системы ТИГИ Кнауф для монтажа гипсовых панелей
Рис. 32. Форма стоечных профилей ПС и направляющих профилей ПН системы ТИГИ Кнауф для монтажа гипсовых панелей (сухой штукатурки). 1 — спинка профиля, 2 — полка профиля, 3 — направление установки стоечных профилей внутрь направляющих профилей, 4 — скрепление стоечного и направляющего профилей саморезами.

Системы крепления утеплителя к стенам с помощью металлических кронштейнов прежде всего полезны там, где деревянные бруски способны быстро сгнить, то есть при влажных каменных стенах подвалов и цоколей. Каменная стена в земле способна увлажняться как влагой грунта, так и влагой из воздуха помещения. Даже будучи гидроизолированной снаружи и пароизолированной изнутри, стена, тем не менее, нуждается в просушке хотя бы потому, что может увлажняться аварийным образом  (через протечку сверху). Поэтому заглубленная стена подвала должна вентилироваться через продухи, расположенные по внешней (рис. 30 а) или по внутренней (рис. 30 г) стороне стены. Зазор по внутренней стороне стены может быть смонтирован по-разному, но проще всего с помощью вышеупомянутых кронштейнов-шпилек с резьбой или металлического каркаса с возведением фальшстены (например, из асбоцементных листов), на которой уже закрепляются слои теплоизоляции, пароизоляции и декоративной обшивки. Металлический каркас при больших механических нагрузках на обшивку вполне может быть выполнен из любого металлопроката сваркой или болтовыми соединениями, а при низких механических нагрузках при помощи хорошо освоенных в быту монтажных систем навесных потолков, офисных перегородок, гипсокартонных обшивок стен. Так, например, могут быть использованы заводские металлические профили для монтажа жёстких каркасов под обшивку гипсокартонными листами (панелями «сухой штукатурки»). Фирмой ТИГИ Кнауф изготавливаются из стальной оцинкованной ленты толщиной 0,55-0,8 мм методом холодной прокатки профили ПС, ПН, ПУ (угловые), ПП (потолочные) и др. Внешний вид профилей ПС (профиль стоечный) и ПН (профиль направляющий) представлен на рисунке 32. Это п-образные профили в виде швеллеров, образованных спинкой и двумя полками, имеющими рёбра жёсткости. Типоразмеры профилей — ПС 50/50, ПН 50/40, ПС 65/50, ПН 65/40, ПС 75/50, ПН 75/40, ПС 100/50 и ПН 100/40, где первой цифрой (числителем) указана ширина спинки, а второй (знаменателем) - ширина полки. На самом же деле ширина спинки профиля ПС 50/50 составляет 48,5 мм, что даёт возможность плотно посадить профиль ПС в профиль ПН с образованием жёсткого короба, скрепляемого саморезами или просечками с изгибом. В образовавшихся коробах (или усиленных швеллерах) удобно создавать вентканалы (в том числе и с рассверловкой вентиляционных и коммуникационных отверстий), пропускать электрические и телевизионные кабели, пропускать кабели электрического обогрева и т. п.

Вентилируемый зазор необходимо предусматривать и в случае внешней облицовки бревенчатого сруба кирпичной кладкой (рис. 30 д), поскольку древесина здесь играет роль паропроницаемого утеплителя. Бревенчатую стену целесообразно пароизолировать с внутренней стороны. Если же в составе стены нет высокотеплопроводных и парозадерживающих слоев, то ситуация резко упрощается. Так, в простейших саунах стены состоят из деревянного каркаса, заполненного утеплителем, и деревянных обшивок из вагонки по обе стороны каркаса. В этом случае пароизоляция не обязательна, достаточна ветрозащита из строительного картона (или диффузионной мембраны) под обеими обшивками, особенно если сауна установлена в отапливаемом помещении в удалении от стен. Но если такая сауна встроена в плохо вентилируемое помещение и особенно вблизи холодной каменной стены, направленной на улицу, то для предотвращения увлажнения помещения (и особенно внутренней поверхности внешней стены помещения) необходимо внутренний слой ветрозащиты стены сауны заменить на пароизоляцию. Внешний слой ветрозащиты стены сауны заменять на пароизоляцию нельзя ни в коем случае.

Зачастую в сухих саунах пароизоляция (например, в виде алюминиевой фольги) закладывается между каркасом и обшивкой без зазора (с возможным клеевым герметичным соединением брусков каркаса с пароизоляцией). При этом обшивка, непосредственно соприкасающаяся с пароизоляционной фольгой (и утеплителем тоже), предотвращает аварийные выпадения мелких плит утеплителя из крупных ячеек каркаса. Если же обшивка не соприкасается с пароизоляцией, то аварийно вываливающиеся из каркаса элементы теплоизоляции могут удерживаться только самой пароизоляцией. В этом случае при низкой механической прочности пленочная пароизоляция может деформироваться (растягиваться, выпячиваться) и даже разрываться, например, при подвижках каркасов, при резких распахиваниях дверей или при сильных поддачах. Поэтому для надёжной сохранности теплоизоляции и пароизоляции недостаточно предотвратить подвижность (разболтанность) каркаса (в том числе и при транспортировке). Необходимо жёстко скреплять теплоизоляцию с рассыхающимся каркасом, например, с помощью тех же кронштейнов, что применяются при утеплениях фасадов (рис. 31). В дачном быту в качестве кронштейнов часто используют обычные гвозди (лучше с шайбами) с длиной на 10-20 мм большей толщины утеплителя, забиваемые через утеплитель в древесину несущей внешней обшивки, после чего утеплитель перевязывается проволокой (или синтетической бечёвкой) за головки гвоздей. Для более надёжного удержания плиты минваты прижимают (желательно на клее) фанерой в размер ячейки каркаса и прихватывают планками-штапиками к каркасу как в окнах и филенчатых дверях (или притягивают фанеру саморезами через заранее просверленные отверстия в фанере к несущей внешней обшивке каркаса). Щели между брусками каркаса и фанерой уплотняют силиконовым герметиком. При этом между фанерой и пароизоляцией образуется гарантированный зазор, выполняющий роль дополнительного теплоизолятора и предохраняющий пароизоляцию от повреждений в аварийных случаях (рис. 33). Само собой разумеется, если использовать очень прочную пароизоляционную плёнку (например, алюминиевую фольгу толщиной 0,1 мм или даже сталь толщиной 0,55 мм), то она вполне надёжно удержит любую теплоизоляцию (уложенную с прижимом впритык к пароизоляции). Такое решение принимается в сандвич-панелях заводского изготовления для монтажа крупных каркасно-навесных сооружений. В дачных условиях, к сожалению, алюминиевая фольга (даже мягкая марки М, отожженная) весьма сложна для герметичного монтажа в стыках и углах, а жесткая упругая марки Т (твердая) вообще не пригодна для пароизоляции, в том числе и по причине неминуемых порывов при возможных перекосах каркаса. Поэтому при наличии возможности алюминиевую фольгу, а также нерастягивающиеся алюминизированные материалы (бумагу, стеклоткань Армофол или картон) желательно использовать в ответственных (постоянно эксплуатируемых) банных объектах исключительно в качестве отражательной, а в целях надёжности пароизоляции для подстраховки заложить под фольгу дублирующую эластичную пароизолирующую плёнку — поливинилбутиральную, полиамидную (капроновую), полиэтиленовую (с рабочей температурой 70-100 °С), полипропиленовую (с рабочей температурой 90-120°С).

Вариант закрепления плиты минеральной ваты в ячейке каркаса
Рис. 33. Вариант закрепления плиты минеральной ваты в ячейке каркаса. 1 — бруски каркаса, 2 — плита минваты (желательно обклеенная бумагой), 3 — фанерка в размер ячейки (или оргалит, тонкая сталь, лист пластика и т. п.), 4 — прижимная планка (штапик) или герметик, 5 — гвозди.

Наибольший интерес для бань представляют полипропиленовые плёнки из нетканого материала (типа войлока), сформированного из спутанного монофиламентного (в виде бесконечной непрерывной нити) волокна, имеющего повышенную термостойкость и высокую прочность на разрыв (Тектон, Пароизол, Изоспан-Д и др.). Для обеспечения паронепроницаемости нетканый материал ламинируют (дублируют) сплошной полиэтиленовой или полипропиленовой плёнкой. Такие плёнки дороги.

Для пароизоляции жилых сооружений широко применяют и самые обычные полиэтиленовые плёнки, изготавляемые из полиэтилена высокого давления (низкой плотности) методом экструзии (выдавливания) через цилиндрическую фильеру с последующим раздувом рукава сжатым воздухом до диаметра 1-1,5 метра. Из семи марок отечественных плёнок для пароизоляции используются только марки Т и В, содержащие антистатические добавки. Толщины плёнок выбираются в пределах (0,3-0,8) мм, плотность не менее 290 г/м². Рабочий диапазон температур от минус 60°С до плюс 80°С (в строго неподвижном состоянии без нагрузок), паропроницаемость (8-25) г/м² за 24 часа.

Рулонный пенополиэтилен толщиной до 10 мм производится методом экструзии газонаполненного вспенивающегося полиэтилена в виде листа через плоскую щелевую фильеру шириной 1-2 метра. Пенополиэтилен можно алюминизировать (Пенофол). Рабочие температуры пенополиэтилена составляют от минус 60 °С до плюс 70 °С (Теплон, Изолон) или до 100 °С (Унифол), паропроницаемость меньше, чем у плёнок.

Большой интерес представляют полиэтиленовые плёнки, усиленные (армированные) тканью, бумагой, полосами полиэтилена или неткаными материалами на основе бесконечного волокна из полиэтилена низкого давления (высокой плотности). Рабочие температуры до (70-80)°С (Изоспан, Свитапфол, Олефол, Юкатон) или до 100°С (Тайвек). Паропроницаемость может быть снижена до 1 г/м² за 24 часа (Ютафол-Н) и даже до 0,3 г/м² за 24 часа (Юкатон-140). Разработка этих плёнок связана в первую очередь с проблемами эксплуатации совмещенных крыш многоэтажных жилых домов, особенно мансардных. Поэтому эти плёнки часто называются подкровельными (но могут, конечно, использоваться где угодно). Дело в том, что совмещенная крыша является одновременно потолком обитаемого помещения. При этом возникают две проблемы:

— пары воды, диффундирующие через паропроницаемый потолок и утеплитель, конденсируются на холодной нижней стороне кровли (многослойной рубероид-битумной, стальной, черепичной), при этом капли конденсата увлажняют утеплитель;
— утеплитель, увлажненный конденсатом, теряет свои теплоизолирующие свойства, дом становится холодным, к тому же снег зимой начинает таять на крыше, образующаяся вода стекает к холодному карнизу и там замерзает, образуя ледяные глыбы (торосы), задерживающие сток воды и разрушающие своим весом карниз.

Все эти факторы характерны и для бань, особенно для однообъёмных. Поэтому изучение опыта городского и коттеджного жилищного строительства и в этом случае будет полезно при постройке бань. Приведём для ориентировки свойства комплекта гидроизоляционных (дождебрызгозащитных) плёнок отечественного производства (по зарубежной технологии) торговой серии «Изоспан», наиболее распространенных в индивидуальном строительстве и обычно называемых подкровельными:

Марка плёнки «Изоспан» А AS В С D
Плотность, г/м² 110 100 70 90 105
Прочность (продольная/поперечная), Н/5 см 177/129 165/120 128/104 197/119 1068/890
Удлинение при разрыве (продольное/поперечное) % 67/75 29/35 79/73 48/54 23/29
Паропроницаемость, г/м² за 24 часа >1000 >1000 22,4 18,4 3,7
Водоупорность, мм вод. ст. >250 >1000 >1000 >1000 >1000
Ширина рулона, м 1,6 1,5 1,4 1,4 1,4
Площадь рулона, м² 70 75 70 70 70
Вес рулона, кг 7,7 7,9 5,0 6,6 7,7

Плёнка марки D представляет собой полипропиленовую ткань с односторонним ламинированием (покрытием) полипропиленовой плёнкой. Обладает исключительно высокой механической прочностью порядка 1000 Н/5 см (сила в один Ньютон Н = 0,1 кг). Это означает, что полоска плёнки шириной 5 см разорвётся при нагрузке порядка 100 кг.

Плёнка марки С представляет собой аналог плёнки марки D, только выполненный из полиэтилена, и поэтому обладает намного меньшей (в 5-8 раз) механической прочностью на разрыв. Плёнки марок С и D являются практически полностью герметичными. Применяются как гидроизоляция (в том числе и для защиты утеплителя обычным образом, например, как рубероид) в местах, где может возникнуть при монтаже и эксплуатации высокая механическая нагрузка на материал (при бетонировании полов, при укладке изоляции между неутеплённой кровлей и обрешеткой, где есть снеговая нагрузка и т. п.). Плёнки выдерживают заметное удлинение при разрыве, что гарантирует сохранность гидроизоляции при незначительных деформациях каркаса стен и крыши.

Плёнки марок A, AS и В являются антиконденсатными. Это означает, что одна из сторон плёнки (а для марки AS обе стороны) выполнена ворсистой, шероховатой и способна удерживать (впитывать) капли росы (конденсата). Целесообразность такого решения объясняется тем, что выбросы значительных количеств пара и заброс брызг осуществляются чаще всего залповым образом (закипел чайник и увлажнил потолок, пошёл дождь и порыв ветра увлёк брызги под кровлю и т. п.). Поэтому полезно эти образующиеся на гидроизоляции капли удерживать, не давая им упасть на утеплитель или каркас, и затем дать им не спеша испариться (выветриться) в вентиляционных потоках. Кроме того, плёнки марок А и AS серии «Изоспан» отличаются тем, что имеют специальную микроперфорацию. Отверстия настолько малы, что не пропускают воду (из-за несмачиваемости), но пропускают пар. Такие плёнки за рубежом называются диффузионными (супердиффузными) мембранами. Фактически это ветродождезащитные паропроницаемые плёнки, о которых говорилось в разделе 3.3. Они хороши в наших условиях тем, что увлажненный из-за небрежности при монтаже (под дождём) утеплитель всё же в состоянии высохнуть через такую мембрану (медленно, но наверняка способен высохнуть, в отличие от случая полностью паронепроницаемых плёнок).

Плёнка марки В сплошная, но имеет ворс. Она считается пароизолирующей, хотя ограниченно пропускает пар (как и плёнки С и D, как и обычные полиэтиленовые плёнки). Принцип пароизоляции в самом общем случае должен подразумевать только одно — скорость возможного поступления пара из жилого помещения снизу в утеплитель должна быть меньше скорости вывода пара вверх из утеплителя на улицу. Поэтому, используя в качестве пароизоляции плёнку марки В, мы должны использовать с другой стороны утеплителя более паропроницаемую (диффузионную мембрану) марки А или AS. Именно такие диффузионные гидронепроницаемые мембраны (типа известной плёнки Тайвек производства Дюпон) обеспечили прогресс в области совмещенных крыш. Напомним, что паропронцаемость пергамина при перепаде парциальных давлений водяного пара ∆pп=1000Па составляет 70 г/м² за 24 часа, а картона без битумной пропитки — 1400 г/м² за 24 часа.

Схема монтажа специализированных гидроизоляционных плёнок марок «Изоспан»
Рис. 34. Схема монтажа специализированных гидроизоляционных плёнок марок «Изоспан». 1 — обрешетка крыши, 2 — кровля (металлочерепица), 3 — конёк, 4 — антиконденсатная плёнка Изоспан-А, 5 — теплоизоляционная плита из минваты, 6 — пароизоляционная плёнка Изоспан-В, 7 — гидроветрозащитная паропроницаемая плёнка Изоспан-AS, 8 и 9 — потоки воздуха через вентиляционные зазоры, 10 — вывод увлажненного (от сушки подкровельного пространства) воздуха через зазор под коньком крыши.

Схема монтажа изоляционных слоев на крыше представлена на рисунке 34. Обитаемый чердак (мансарда) утеплён утеплителем 5, который пароизолирован с внутренней стороны плёнкой 6 Изоспан марки В (а лучше марки С или даже D). Плёнка 6 закладывается под обшивку (вагонку, гипсокартон) с обязательным зазором шероховатой стороной внутрь так, чтобы в случае выпадения на плёнку росы (при залповых выбросах пара) капли не попадали на обшивку. Сверху утеплитель гидроизолирован (точнее, ветродождезащищён) от возможных брызг диффузионной мембраной 7 марки Изоспан-AS, уложенной прямо на утеплитель без зазора. Над мембраной 7 должен быть организован обязательный воздушный продух 8 для высушивания мембраны 7 и утеплителя 5. Над зазором 8 может быть смонтирована вторая диффузионная мембрана 4 марки Изоспан-А (шероховатой стороной вниз при расположении под обрешёткой 1 или шероховатой стороной вверх над обрешёткой 1) для ветродождезащиты плёнки 7 при ливневых или аварийных протечках кровли. Такая схема полностью разделяет кровлю и утеплённый потолок совмещенной крыши. Если же чердак является необитаемым и неотапливаемым, то схема изоляции упрощается: достаточно под кровлю заложить для страховки от протечек любую из вышеперечисленных плёнок Изоспан, поскольку все они являются дождеветрозащитными.

При монтаже плёнок для склеивания полотнищ (рулонов) внахлёст между собой и с ограждающими конструкциями применяется специальная соединительная самоклеющая лента марки Изоспан-SL.

Источник: Дачные бани и печи. Принципы конструирования. Хошев Ю.М. 2008

поддержать Totalarch

Добавить комментарий

CAPTCHA
Подтвердите, что вы не спамер (Комментарий появится на сайте после проверки модератором)