Принципы конструирования бань

Беспроточные полости

Все современные печи (даже колпаковые) являются канальными и состоят из двух обязательных элементов: каналов (вертикальных и горизонтальных) и полостей. Подобное разделение условно: полости (сосуды) являются просто более широкими каналами и могут быть отождествлены лишь как места расширений каналов (отверстий) в более широкие каналы (полости). Во всяком случае ясно, что у печи всегда есть топливник (полость) и дымовая труба (канал). Полости бывают беспроточными (тупиковыми) и проточными (транзитными), могут располагаться вверх, вниз и вбок от каналов. Разделение полостей на проточные и беспроточные тоже весьма условно, поскольку увеличение скорости ввода газа (дыма) может превратить беспроточную полость в проточную и наоборот. Кроме того, проточные полости могут иметь беспроточные участки (узлы, секции). Ведь наличие сквозняка в комнате вовсе не означает, что в комнате не могут существовать беспроточные застойные зоны, на которые не распространяются влияния сквозняка. Поэтому понятие беспроточной полости является очень важным для печей.

Проточные полости

К сожалению, серьёзных экспериментальных исследований газодинамики печных колпаков до сих пор нет. Отчасти это объясняется отсутствием практического интереса к «свободным» беспроточным колпакам: ведь даже самые рьяные поклонники систем «свободного движения газов» почему-то стараются (порой неосознанно, интуитивно) «загнать» дым в колпак (верхний) отнюдь не «свободно» («самотёком»под действием сил гравитационного всплывания), а именно за счёт высокой скорости дымовых газов — в фонтане за заужением (рис.118,а). То есть, во-первых, принудительно за счёт напора в печной системе (за счёт разряжения в печной трубе), а во-вторых, именно вертикально снизу вверх (по ходу дыма в вертикальном переточном дымоходе), а не горизонтально (когда «вольные» движения всплытия проявились бы на фоне «принудительных» движений вдоль тракта печи). Принудительный ввод горячего газа в колпак (тем более секционированный) полностью перечёркивает при этом заявляемую возможность сепарации в колпаке горячих и холодных струй. При этом сами «колпаковые» системы теряют образ истинных колпаков (перевёрнутых стаканов с одним отверстием) и приобретают вид замкнутых сосудов с двумя (в том числе несимметричными) отверстиями: входным и выходным.

Турбулентные струи в полости

Более сложная картина возникает при резком (неплавном) переходе потока из канала в полость. При этом возникает струя газа и ещё одно явление турбулентного типа. Дело в том, что полость — это большое количество неподвижного газа, который может турбулентно подмешиваться в поток, а в застойных зонах объемы газа малы, и они постоянно обновляются за счет поступления направленного потока и уходом взвихренного потока. Газовый поток, вырывающийся из трубки в открытое пространство (заполненное тем же газом, из которого состоит сам поток), называется свободной затопленной струей. Наиболее важной особенностью затопленных струй является образование газодинамически неустойчивой границы между неподвижным и подвижным газом, которая взвихривается и образует всё более расширяющийся конусом пограничный слой - так называемый турбулентный след струи. При этом струя как бы «всасывает» внешний газ, а на самом деле просто смешивается и за счёт своей инерции подталкивает ранее невозмущённый газ. Объёмы захватываемого в движение (эжектируемого, подтекающего, всасывающегося) газа могут многократно превышать объёмы газа, истекающего из канала и зависят от геометрии ввода.

Давление в колпаках

Печная конвективная система (как последовательность полостей и каналов) по крайней мере в двух точках соединена с внешним пространством. В этой системе мы можем «нарисовать» два типа замкнутых кривых траекторий движения газов. Первый тип — это сквозные траектории, проходящие по внутренностям печи, выходящие наружу и затем вновь входящие в печь. Это вентиляционные траектории, замыкающиеся вне печи. Второй тип — это циркуляционные траектории, располагающиеся только внутри печи и замыкающиеся внутри печей. Это циркуляционные траектории, не выходящие наружу. Вентиляционные траектории обусловлены наличием тяги дымовой трубы, так что являются траекториями «вынужденного движения газов» (а при наличии механических вентиляторов — траекториями «принудительного движения газов»). Циркуляционные траектории — это траектории «свободного движения газов» в том смысле, что они не определяются дымовой трубой. Общая газодинамическая обстановка в печи< оценивается суммированием скоростей движения по всем возможным траекториям: сквозным и циркуляционным.

Топочные процессы

Мы опять возвращаемся к процессам горения и вновь вспоминаем, что сама печь (и её конструкция) не совсем то, что процессы горения в ней. Дрова жгут люди, и при этом дрова не знают, где горят: в бане или в топке паровоза. А вот многим дачникам (и даже печникам) кажется, что вовсе не они лично, а именно сами печи как-то определяют, как гореть дровам. Слишком у многих живёт нехитрое размышление, что «дрова пусть горят в топливнике», и знать о них больше нет необходимости. Но что значит «пусть горят»? Ведь печь является лишь аппаратом (инструментом) в руках человека, таким же, фактически, как кастрюля в руках повара. Как топишь, так печь и горит. Но бывает, конечно, что «кастрюля не подходит». Например, можно бесконечно ругать металлическую варочную плиту (которая «даёт так много сажи» и совсем «не держит тепла»), настоятельно рекомендуя дачнику заменить её на другую (например, на кирпичную печь-шведку), даже «не догадываясь», что эта металлическая плита предназначена именно и только для быстрого приготовления пищи, а не для обогрева помещения.

Нагрев каменок в печах

Закрытые фильтрующие каменки периодического действия в начале топки загрязняются пеплом, сажей и смолами. Поэтому во избежание отравления людей во время парения угарным газом, каменку приходится обжигать прокаливанием до высоких температур 700-1000°С. Столь сильный нагрев, хоть и является гордостью бытовых печников, совершенно не нужен для парения и даже затрудняет получение мягкого пара. С аэродинамической точки зрения фильтрующая каменка представляет собой газоход со множеством параллельных сливающихся и разделяющихся извилистых каналов между камней (то есть стационарный зернистый слой), причём с ламинарными, как правило, потоками дымовых газов (Re<2300). Сопротивление трения (силы вязкости) обычно превышают сумму местных газодинамических сопротивлений. Поэтому, если камни заполняли бы всю дымовую трубу до верха и имели бы одну и ту же повышенную температуру на всех высотных уровнях, то расход дымовых газов совсем не зависел бы от высоты дымовой трубы: и совсем невысокая труба, и очень высокая пропускали бы через себя одно и то же количество дымовых газов. Этот неожиданный результат объясняется тем, что чем выше труба, тем больше тяга, но во столько же раз больше сопротивление трения газового потока о камни. В то же время, если верхняя часть трубы освобождена от камней, но имеет ту же температуру, что и нижележащие камни, то расход был бы существенно большим. Аналогичные зависимости имеют место во влагонасыщенных фильтрующих грунтах при течении воды под собственным напором.

Экранирование печей

Поскольку стенки топливников металлических печей нагреваются до температур обычно превышающих 100°С, основным механизмом теплоотдачи является лучистый в инфракрасной области. Поэтому при чрезмерной мощности излучения в комнату топливник огораживают непрозрачным для инфракрасных лучей экраном — кожухом печи (см. поз. 2 на рис. 150, поз. 9 на рис. 149, поз. 11 на рис. 117). Экраны обычно изготавливают из металла, но могут быть сделаны из любого огнестойкого даже оптически прозрачного материала (термостойкого стекла), лишь бы он не пропускал инфракрасные лучи. Куда же в этом случае «пропадает» лучистый поток? Изменяется ли при этом теплоотдача печи? До каких же температур может нагреваться сам экран-кожух печи? Прежде всего вспомним, что падающий на слой вещества лучистый поток I₀ частично отражается Iотр, частично проходит внутрь слоя, где частично поглощается, а частично проходит через весь слой и выходит через него Iпроп (рис. 151). Внутри мутного слоя излучение может изменять своё направление (рассеиваться), отражаясь от неоднородностей (частиц, сгустков), и выходить со всей тыльной стороны диффузно Iпроп (пунктирная траектория). Процесс поглощения отличается от процесса рассеивания тем, что при поглощении излучения вещество слоя нагревается, а при рассеивании нет. Интенсивность направленного луча ослабевает как за счёт поглощения, так и за счёт рассеивания. Но поглощённое излучение из слоя не выходит, а рассеянное рано или поздно выйдет в виде ореола (как в случае света фар в тумане), в том числе и вперёд навстречу падающему излучению. В этом случае рассеянный поток вольётся в состав отражённого в виде диффузной составляющей. По сути отражённый свет есть частный случай рассеянного. В то же время, явление рассеяния увеличивает путь движения излучения в веществе, что повышает степень его поглощения.

Футеровка и облицовка печей

Защитить внутренние стенки топливников от чрезмерных тепловых нагрузок можно по-разному. Во-первых, их можно загородить изнутри экранами, поглощающими лучистые потоки. Если защитные экраны, нагревающиеся лучистым теплом, установлены снаружи топливника, то нагревают воздух в помещении. А если защитные экраны установлены внутри топливника, то нагревают дымовые газы (или специально подаваемый в зазор воздух). Во-вторых, стенки топливников можно облицевать изнутри низкотеплопроводным огнестойким материалом (обмуровать). Имеется разница между теплоизоляционным и теплозащитным принципами. Теплоизоляция не выпускает тепло из нагретой зоны. А теплозащита защищает от воздействий тепла, исходящего из нагретой зоны. Экранировка представляет собой теплоизоляцию, если она установлена внутри топливника, и теплозащиту, если она установлена вне топливника. Теплозащита может не сберегать тепло, накопленное в нагретой зоне. Так, внешнее экранирование печей буквально «высасывает» тепло из печи, преобразуя его в нагретые потоки воздуха, но защищает человека от тепла, образующегося в печи. Причём внешний экран (кожух) защищает и от лучистого тепла, и от тепла прикосновения (ожога при касании).

Утепление дымовых труб

Холодная труба — это не только плохая тяга и дымное горение. Холодная труба — это возможное выделение росы из дымовых газов. Дело в том, что при горении дров дымовые газы увлажняются за счёт воды, находившейся в дровах как естественная влажность, а также образовавшейся при окислении древесного вещества. Поэтому абсолютная влажность у дымовых газов значительно выше, чем у воздуха атмосферы. Так, массовое влагосодержание продуктов сгорания d(г/кг) теоретически равно d=d₀+(92,1+1,68w)/(0,072+α), где d₀(г/кг) — влагосодержание атмосферного воздуха, α (кг/кг) — коэффициент избытка воздуха, w% — относительная влажность воздуха. В самых жёстких реальных условиях влажных дров с w=100% и нехватки кислорода α=0,5 увеличение влагосодержания составит (d-d₀)=454 г/кг, то есть 454 г водяных паров в 1 кг влажных дымовых газов. Это настолько высокая цифра, что превышает равновесную плотность пара при температуре 100°С. Это означает, что гарантированно избежать конденсацию водяных паров в дымовой трубе при топке мокрыми дровами возможно лишь при прогреве трубы до 100°С и выше. Действительно, нормой считается температура выходящих из устья трубы дымовых газов на уровне 110-120°С в расчёте на зиму. В более реальных условиях w=30% и α=1 увеличение влагосодержания составляет (d-d₀)=133 г/кг. В пересчёте на нормальный воздух с плотностью 1,3 кг/м³ абсолютная влажность дымовых газов составит 0,172 кг/м³. Это означает, что при температурах внутренних стенок дымовой трубы ниже 70°С конденсация водяных паров в дымовой трубе неизбежна. Таким образом, основной задачей является как можно быстрый прогрев дымовой трубы хотя бы до температур порядка 70°С.

Категорирование пожарной безопасности для печного отопления

Назовём пожаростойкой (для печного отопления) стену (перегородку), имеющую предел огнестойкости не менее 1 часа, то есть REI60 и более (см. далее), и имеющую предел распространения пламени ноль сантиметров. Для такой пожаростойкой стены (перегородки) расстояние до наружной поверхности печи или дымового канала (трубы) никак не нормируется (СНиП 41-01-2003). Это значит, что к такой пожаростойкой стене (перегородке) печь или трубу можно поставить хоть вплотную. В такую пожаростойкую стену (перегородку) можно даже вмонтировать печь (в том числе и металлическую), например, так, чтобы топилась из предбанника, а тепло и пар отдавала бы в баню (паровое помещение). Если же такой пожаростойкой стены (перегородки) в здании (помещении) нет, то печь должна отстоять от стен на расстояние нормируемой отступки (разделки).

Нормы пожарной безопасности в банях

Печное отопление считается пожароопасным, а поэтому допускается по СНиП 41-01-2003 только в одноэтажных банях при числе мест (людей) не более 25. Печь представляет опасность прежде всего потому, что в ней горят дрова. При небрежной эксплуатации печи возможна вывалка горящих поленьев, выброс искр и пламени из дверки топливника, выброс огня при аварийных разрушениях стенок печи. Образование трещин в кирпичных и металлических печах хоть и относится к аварийным случаям, но представляется в быту обычным явлением. Эти трещины особенно опасны в недоступных для повседневного визуального контроля местах, например, в зонах, примыкающих к деревянным стенам и потолкам. Опасными могут быть даже небольшие трещины толщиной всего 2-3 мм, причём в кирпичных печах из-за того, что в них может накапливаться пушистая сажа: либо смолистая вначале протопки в дымоходах, либо сухая в дымовой трубе. Более опасна сухая сажа, но свежая. Слой сажи толщиной более 2-3 мм уже способен воспламеняться от искр в дымовых газах. В дымоходах внезапно возникает ровный глухой гул, в щелях прочисточных отверстий и задвижек появляется ровное без всполохов жёлтое свечение, из трубы на крыше выходит широкий размытый шлейф дыма с возможным появлением искр и даже пламени. Горение сажи происходит в режиме тления примерно так же, как тлеет папиросная бумага - медленным фронтом, беспрепятственно проникающим во все закоулки дымовой системы, включая аварийные трещины, прогары и технологические отверстия (дверки, задвижки), также обычно забитые сажей.

Защита древесины от воспламенения

Воспламенение древесины возможно лишь при нагреве её внешних слоев до температур активного пиролиза, в том числе и при лучистом нагреве, когда горючая смесь продуктов пиролиза (летучих) и воздуха становится способной загореться от внешнего источника воспламенения (огня, искры, горелки и т. п.). Если внешнего источника воспламенения нет, то воспламенение становится возможным в режиме самовоспламенения, когда какой-то участок древесины, перегреваясь, не просто выделяет летучие, а обугливается. При этом активный древесный уголь может начать взаимодействовать с воздухом (тлеть) с самозагоранием и в конце концов за счёт своей высокой температуры воспламеняет горючую смесь над поверхностью древесины. Таким образом самовоспламенение древесины происходит за счёт тления возникающего древесного угля. А тлеющий древесный уголь, как все знают, возникает в первую очередь на ворсинках древесины в виде угольков. Поэтому защита древесины от самовозгорания (например, на полке бани, где нет источников воспламенения, но есть высокие температуры) прежде всего должна подразумевать защиту от воспламенения ворсинок древесины.

Функциональность печей для бани и вопросы выбора

Настоящий раздел является чисто методическим, поскольку многие поднимаемые вопросы условны и спорны. Проблемы выбора порой крайне субъективны, но вполне реальны. Они возникают тотчас при виде многообразия проектов кирпичных печей в литературе и множества металлических печей в торговле (ww.pechi.nm.ru). Счастлив тот дачник, который, понимая, что любая печь даёт тепло, без долгих раздумий сразу возьмёт ту печь, что ему понравилась с первого взгляда. Но есть и такие дачники, которые будут бесконечно мучиться, тщетно допытываясь, чем же всё же одна печь отличается от другой и за счёт чего одна печь якобы лучше другой. Единых общепризнанных рецептов выбора печей (как и любого иного товара) нет, также как нет и единых рецептов создания печей. Однако, ясно, что исходным моментом является функциональность печи, то есть не то, как в ней горят дрова, а то, что же она может обеспечить как обогревательный прибор и как элемент интерьера. Конечно же, для дачника важно, чтобы печь быстро и бездымно прогревалась (и зимой и летом) в условиях эпизодической эксплуатации, чтоб горела на любых дровах (даже мокрых), чтоб если и забивалась сажей, то легко чистилась. Но в конце концов, печь является лишь инструментом в руках человека, таким же, как кастрюля, в которой можно приготовить пищу, а можно и испортить её. К любой печке и к любой топке можно приспособиться (привыкнуть), поскольку любая печь имеет принципиальную возможность выполнить свою основополагающую функцию нагрева. А вот баня с любой (произвольной) печью может и не выполнить своих основополагающих функций. Так, например, представительская баня немыслима с самодельной сварной жестянкой на самом видном месте, хотя такая печь, может быть, обладает уникальным КПД и непревзойдённой температурой каменки

Электрические системы обогрева бань

При всех своих достоинствах печное отопление дачных бань имеет недостатки, связанные с загрязнением помещений, пожароопасностью, а а главное — с хлопотностью процедуры протопки. Если редкие протопки досуговых бань обычно представляются удовольствием и развлечением для дачника на отдыхе, то постоянные регулярные протопки мытейных бань представляется скорее серьёзной обузой, особенно если дачнику уже удалось избавиться от печки в жилом доме. В городах печи в квартирах и даже в коттеджах давно стали анахронизмом, хотя ещё часто встречаются в домах (даже в США и Европе)преимущественно в декоративных интерьерных целях и для аварийных случаев.

Электрические спирали для обогрева бань

Ещё лет сорок-пятьдесят тому назад в области электрообогревательных приборов царствовали открытые электроспирали — мерные отрезки проволоки из металлических сплавов с высоким электрическим сопротивлением. Так, наиболее известный сплав 67,5% Ni, 16% Fe, 15% Cr и 1,5% Mn (нихром) имеет удельное электросопротивление 100 мком•см, много большее удельного сопротивления железа 9,8 мком•см, алюминия 2,8 мком•см, меди 1,7 мком•см. Высокое электросопротивление нихрома позволяет использовать короткие отрезки проволоки (не более нескольких метров при диаметрах 0,1-0,5 мм), которую для большей компактности наматывали на стержни диаметром 2-5 мм с получением спиралей.

Страницы